

Progress with the multi-year Metals Environmental Exposure Data Program (MEED) to anticipate the challenges of the EU Zero Pollution Ambition **Policy (ZPAP) and the Chemicals Strategy for Sustainability (CSS)**

Hugo Waeterschoot¹, Marnix Vangheluwe² and Lara Van de Merckt¹

¹Eurometaux, Tervurenlaan 168, 1150 Brussels, Belgium; ²ARCHE Consulting, Liefkensstraat 35D, 9032 Ghent, Belgium Contact: <u>waeterschoot@eurometaux.be</u> SETAC Vienna reference 3.04.P-Th106

The Chemicals Strategy for Sustainability (CSS) a key building block of the Green Deal, is a main pillar of the EU Zero Pollution Ambition (ZPA). The CSS aims to achieve good quality status of the environment by reaching exposure levels of chemicals that are no longer harmful to health and the environment. This challenges chemicals and environmental regulations given focused on substance specific assessments and limits. Aspects like combined effects of chemicals in the environment and assuring they do not affect bio-diversity need therefore to be included in regulatory schemes. Although postponed, the EU proposes the introduction of a Mixture Allocation Factor (MAF) to demonstrate safe use and lack of impact on ecosystems from the cocktail of chemical exposures. This is a real scientific challenge for the EU metals industry, given their natural background and increasing use in Green Deal applications like EV batteries, solar cells, windmills and electronics. This challenge drove the sector to design a comprehensive "Metals Environmental Exposure gathering Programme" (MEED), including the development of scientific concepts and targeted test work, to assess combined exposure and its impact on Biodiversity. The aim is to timely comply with the objectives of the ZPAP and the EU biodiversity strategy. Its timeline (2022-'26) allows to feed the outcomes into ongoing regulatory debates (e.g., REACH 2.0, ZPAP, revision Soil & Water frameworks).

Anticipated regulatory protection objectives by MEED

Pillars (objectives) of the MEED program

Overall structure of the MEED program

Pillar 2 (Project 1 & 2) Update regional exposure levels Map today's metal concentrations and combined risks across the EU, trends & predicted future concentrations due to volume increase (P1) for as many metals as possible Improve the assessments of **consumer and professional releases**, given a weak link (P2) **Pillar 3 (Project 4 and 5) Assess impact mixture effects** Review of existing knowledge on metal mixtures and metal-organic mixture interactions **Design smart testing program** to fill I-PCS mixture gaps Implement testing on Cladocera (Dapnia magna) and Algae (Raphidocelis subcapitata) on metal-metal and metal-organics mixtures **Pillar 4 (Project 3): Measuer potential impact on Biodiversity** - Provide toolbox to assess impact on Biodiversity Run **pilot trials** to develop efficient assessment **Pillar 5: Define alternative concepts to MAF**

Science based tiered alternative approaches

- Applicable for different regulatory schemes

Some results so far

Project 1: Regional exposure update

Table 1: Inorganics in the Waterbase (surface water) and number of samples before and after data processing. Before data After data

		processing	processing	
	Ag	20 954	5 595	
	As	189 824	163 341	
	Ва	35 274	33 917	Metal samples in Waterbase
	В	48 674	40 102	
	Cd	278 072	233 094	
	Co	45 785	30 033	
	Cr	222 037	185 970	
	Cu	245 462	184 935	
	Hg	212 579	178 944	_
- 6	1.;	4 702	400	
	LI	1783	489	_1
	Mn	95 172	489 71 170	
(Mn Mo	95 172 25 465	489 71 170 25 342	
•	Mn Mo Ni	95 172 25 465 275 291	489 71 170 25 342 240 689	
•	Mn Mo Ni Pb	95 172 25 465 275 291 280 208	489 71 170 25 342 240 689 241 503	_)
	Mn Mo Ni Pb Sb	95 172 25 465 275 291 280 208 30 551	489 71 170 25 342 240 689 241 503 30 145	_)
;	Mn Mo Ni Pb Sb Se	95 172 25 465 275 291 280 208 30 551 49 235	489 71 170 25 342 240 689 241 503 30 145 37 156	_)
	Mn Mo Ni Pb Sb Se Ti	95 172 25 465 275 291 280 208 30 551 49 235 14 749	489 71 170 25 342 240 689 241 503 30 145 37 156 14 267	
	Mn Mo Ni Pb Sb Se Ti V	95 172 25 465 275 291 280 208 30 551 49 235 14 749 55 094	489 71 170 25 342 240 689 241 503 30 145 37 156 14 267 49 220	

Interpretation: Extensive existing monitoring datasets. Data quality (LOQ) and lacking data on critical metals relevant for the Green Deal (e.g. lithium, Rare Earths) remains a challenge.

Project 3: developing a pilot tool for Biodiversity impact assessment °

■ RCR with PNEC ■ RCR with HC5-equivalent

Category	Criterion	Refined I-PCS selection
Usually risk drivers in mixtures	Contributing to the 90 th percentile of the Hazard Index (HI) in >50% of the mixtures	As, Ba, Ce , Co, Cu, Dy , Mn, Ni, Se, Y , Zn
Sometimes risk drivers in mixtures	Contributing to the 90^{th} percentile to HI in $\geq 10-50\%$ of the mixtures	Ag, Cd, Cr, Er, Gd, La , Pb, V
Usually not risk drivers in mixtures	None of the above	B, Ge In, Li, Lu , Mo, Nd , Pr , Sb, Te, W , Zr

0.4

Project 5 : Literature reappraisal metal-mixtures

Accuracy of CA in predicting mixture effects at low effect concentrations? MIF - per experiment (n=92)

Conclusion: CA seems to overestimate mixture toxicity by 1.3-fold

Pillar 5: defining alternative concepts to MAF °°

Project 5: First outcome testwork on M-O mixtures °°°

State of play: the outcome of the MEED program allows for designing and applying an alternative science based approach to the EU-MAF approach, to assess the impact of combined exposure at regional and local level. It is recommended to discuss and develop this approach further in a series of workshops.

Comparisons between the metal or the organic tested individually and in the presence of low concentrations (half the EC10) of the selected organic or metal. Outcome is expressed as the ratio by which the toxicity was either increased or inhibited by the presence at low concentrations of the other substance.

Initial findings: Metals at no-effect concentrations may influence the toxicity of specific herbicides requiring further investigations for which modes of actions this could apply.

Detailed SETAC-Vienna Posters: ° 1.04.P-We018 by Vanessa Moreira ; °° 6.07.P - Tu471 by Charlotte Nys ; °°° 3.04.B.T-05 by Maria Laura De Donno

Conclusions on MEED so far

- Metal volumes manufactured, used and recycled, will increase significantly due to the Green Deal objectives, hence questioning the combined impact on water, soil, and on Biodiversity.
- **MEED** aims to collect up to date exposure evidence to anticipate the ZPA, MAF and new and updated EU environmental compartment legislations
- Aquatic, soil and sediment regional monitoring datasets for a long series of metals were collected and checked for metals combined concentrations and priority risks drivers. Datasets for some metals that are key for the Green Deal like Li and Rare Earths are limited or lacking while being potential risk drivers, but improvement of environmental threshold level feasible.
- Interaction Factor (MIF) allows to define the level of conservatism provided by the Concentration Addition model
- ✓ The literature on metals mixtures (MMs) and metal-organic mixtures (MO's) was reviewed and reappraised demonstrating that MIFs for metals mixtures are on average larger than 1 (median MIF 1.3), hence leaning more to antagonistic than synergistic. The complementary smart testing design showed MIF's >1 for MM's but mixed conclusions for some MO-herbicides
- ✓ A toolbox to assess the potential impact of know and unknown mixtures in real environmental conditions, using modelling, biomonitoring and metabarcoding was piloted, demonstrating being applicable and sensitive;
- Y The combined work of MEED allows to design a tiered approach based on available mixture evidence as an alternative to the EU-MAF concept for different regulatory uses
- ✓ The outcome of the MEED program will be published and underlying data will be made available for research on mixtures and regulatory compliance demonstration

SCAN ME

Acknowledgements: this research is funded by Eurometaux and its members