Modeling Metal Rapid Removal Experiments for Hazard Classification

Rader K. J., Carbonaro R. F., Huntsman P., Hudson M., Burton G. A., Mendonca R., Costello D., Baken, S., and Garman, E.

Workshop on Progressing the Rapid Removal Concept for Metals Classification/Hazard Identification

> ECHA Helsinki, Finland

> 8 February 2019

Introduction

- A Weight of Evidence (WoE) approach has been developed to assess rapid removal of metals from the water column
 - Action item: Develop extension of T/D P that can be used as a standardized approach for hazard classification
- Goal of modeling task: Provide mechanistic insight into important processes controlling metal removal from the water column in T/DP-E experiments performed by CanmetMINING and University of Michigan

Materials and Methods

- CanmetMINING OECD 29 T/DP-E (part 1) experiments
 - 4-days and 28-days in duration
 - pH 6 metal solutions, spike with single addition of 10 g/L of low binding substrate, mix and let settle, collect samples at various times
- Mass balance equations describing mechanisms of metal removal in the T/DP-E experimental systems were developed and solved with a computer program

2-Layer Model

Two-Layer Model

Example Model Equations for Layer 1

Dissolved Metal:

Environmental Engineers and Scientists

2-Layer Model Results: Copper

- Added substrate particles settle rapidly
- Some metal in the water column adsorbs to particles and settles with them
- Once particles have settled from the water column, dissolved and total metal merge → all water column metal is dissolved
- Metal removal from the water column continues via transport to and direct adsorption by the settled substrate particles

2-Layer Model Results: Strontium

- Same mechanisms described for copper are at play for strontium
- Because of slower adsorption (lower k_{ads}) and lower affinity for the particulate phase (lower K_d), the overall extent of strontium removal is less than copper

2-Layer Model Results: Other Metals

- The model was able to fit data for Ag, Pb, Ni, and Zn using same settling velocity and bulk exchange coefficient as for Cu and Sr
 - Only metal-specific k_{ads} and K_d parameters were varied to fit data

2-Layer Model Results: University of Michigan T/DP-E Experiments with Ni

The model was able to fit T/DP-E data from a different laboratory with different substrate types/loadings

Impact of Substrate Loading

- CANMET OECD 29 T/DP-E (part 1) used a single addition of substrate at 10 g/L
 - Questions were raised whether substrate loading affected removal
- Goal: Use <u>calibrated</u> model to assess additional substrate loading scenarios including 10 additions of 1 g/L (instead of 1 addition of 10 g/L)
 - Alternate loading yields same substrate concentration in Layer 2 at day 28

Substrate Loading Results: Copper

<u>1 addition of 10 g/L</u>

 Removal via sedimentation followed by removal via transport to and direct adsorption by settled substrate particles

10 additions of 1 g/L

 Removal by sedimentation is limited; direct adsorption by settled substrate still important

Slower removal but same overall removal extent at day 28

Concluding Remarks

- The OECD 29 T/DP-E (part 1) experimental data could be successfully modeled
- The mechanistic model highlights important processes occurring in the T/DP-E including:
 - 1. kinetic adsorption of dissolved metals to substrate particles;
 - 2. settling of particles with adsorbed metals; and
 - 3. dissolved metal transport to and direct adsorption by the settled particles

Concluding Remarks

- Calibrated metal-specific parameters (e.g., Kd) follow expected trends based on intrinsic properties of the individual metals
 - e.g., Cu compared to Sr
- Alternative substrate loading scenarios: *rate* of removal was impacted but overall *extent* of removal was the same

Questions?

