

Stimulating Substitution within a Circular Economy perspective in the metals sector, a conceptual frame

Workshop outcome

By France Capon, Violaine Verougstraete and Hugo Waeterschoot

The second secon

Concept of the workshop

- Frame to stimulate Substitution for metals recognizing their properties and economic contributions to sustainable growth
- Concept of Sustainable Substitution:
 - Exposure reduction
 - Hazard management where feasible
 - Assessing/considering :
 - EOL and recycling
 - Other EU EHS legislation/tools
 - Societal value and impact

1. Metals' key properties

Metals are natural elements often occuring commonly (Zn-Cd, Pb-Ag, Cu-As, ...)

Recycling does not alter the original metal properties

A Conceptual Frame for assessing/stimulating substitution for metals

76 77 74 73 32

e

Proposal for Frame for Sustainable Substitution assessment/promotion of metals

Promote Sustainable substitution by assessing in a stepwise approach if the replacement of a Substance of Very High Concern is technically and economically feasible from a combined perspective of Chemicals Management, Circular Economy, and other EU-Environmental and Health policy objectives; recognising Societal Value and Impact.

Check for DROP-in or REPLACEMENT Technology The Pb stabilisers case in PVC

Drop in's in the Metal sector: a difficult target due to specific properties

Pb-stabilisers in PVC

A voluntary commitment... but took time and was not an easy ride ... Complemented by an EU restriction

ELSA – European Lead Stabilisers Association ECOSA – European Calcium Organic Stabilisers Ass COS – Calcium-based Stabilisers Pb – Lead-based Stabilisers ... and we did it! vingl[®] This is a success example of the European PVC industry voluntary commitment

We can proudly say that we have achieved our goal to "replace Pb-based stabilisers in PVC applications in the EU-28, by the end of 2015".

SUSTAINABLE DEVELOPMENT

This was inspected and confirmed by an external audit company.

Drop in substitution on Pb stabilisers

EU at the forefront but what is the impact of other jurisdictions / markets that are not moving forward on substitution?

Drop-in substitutes: start small ...

And even then it remains difficult to find an optimal alternative

Substitution of Co-contaning desiccant in linseed oil paint from Skovgaard and Frydensberg

- Desiccant reduces the drying time from weeks to hours
- Ensures uniform curing in the paint layer
- Makes drying possible under different temperature, humidity and light conditions

Substitution of Co- contaning desiccant in linseed oil paint from Skovgaard and Frydensberg, paint manufacturer

Parameter	Requirement/	Alternatives					
		Co	1- Mn	2- Mn	3- Fe	4- Mn	
Drying time	Max. 12 hr	12	>24	18	23	12	
Colour	Neutral (1 - 5)	4	-	3	2	4	
Adherence	Good	+	+	+	+	+	
Curing	Uniform	+	nd	med	slow	med	
Hardness Glossiness	High	good	nd	Good	High	Good	
Safety & health	No CMR class.	Repr 2	ok	ok	ok	ok	
Classification	Should not trigger further classification		ok	ok	ok	ok	
Price	Minimal	-		+2%		+8%	
e DHI							

DHI

© DHI

Ni catalyst

- On the search for an alternative... so far no holy grail found... due to the complexity of the properties and reactions to substitute for.
- They exist (Ru)... but may be too expensive or not enough material being available.

Market/Functionality Matrix Ni Catalysts, info from ECMA members

Market	Refinery	Hydrogen	Fertilisers	Petro- chemicals	Fine chemicals	Oleoche- micals
Steam reforming/ Methanation						
Hydrotreating (HDS, HDN, HDO)						
Hydrocracking						
Hydrogenation						
Amination						
Sulfur trapping						
= nickel	is being used					
© DHI						

inherent properties of

out with different activity

eans (dramatically)

ble the most important ation and sulphur

EOL, impact on Recycling and Material Streams

Can Pb in Cu be substituted ?

Pb fulfills many specific properties in Cu alloys... some being substitutable by Bi or Si

Can Pb in Cu be substituted by Bismuth?

YES... but

- The available volumes of Bi are too small, so price spike
- Needs more Pb ores (50-100 x more)
- Serious consequences on Recycling (e.g. Impossible to separate Bi from Cu)
- Nevertheless promoted in other jurisdictions...

Impact on other EU policies

The longer term view...

Would the reduction in fuel/diesel for mobility due to climate and fine dust reduction policies allow for reducing the need on Ni-catalysts of making its alternative (Ru) viable?

- Most probably no,
- given the decrease being compensated by an increase for aviation, road transport and petrochemical uses

The longer term potential

Substitution: can we learn from past successful cases to help understanding the needs/challenges for the future?

Good learnings exist: *Pb in petrol, battery* materials, petrol versus electric cars...

FIG. 2. Parallel decreases in blood lead values and the amounts of lead consumed in gasoline between 1976 and 1980. Source: USEPA/Environmental Criteria and Assessment Office (1986).

What was (probably) the biggest & fastest substi-

tution case in the EU with the largest impact?

Petrol versus Electric cars

Petrol versus Electric cars

BUT.... SVHC materials will remain a(n increasing) part of recycling...

RECYCLED materials offering:

Metal/Element Use Intensity in Products 1700 1800 1900 2000 Materials complexity offered for recycling will:

- rise for the coming decade
- either from articles (Ni, Co, ...) or from side streams in case demand decreases (Cd)

Illustration of the various scraps and secondary materials processed by European metal recyclers

Conclusions on the longer term:

- Large and effective substitutions with a large impact on society were:
 - driven by innovation in substances/technologies
 - rather than technical/regulatory action (except when tax regulations intervened)
- **Societal support** (tax incentives, changes in habbits, ...) helped creating demand/leverage for substitution
- Important technology and economic breakthroughs will lead to large changes in material streams on potentially SVHC materials
- Those trends can be triggered fast but keep on for decades
- *Material flows for inorganics* are somewhat independent from the demand (eg as a material or a by or waste product)
- Restricted impurities/minor constituents will continue to increase in recycling processes...

A Non-Toxic Environment... or for metals & inorganics a *risk controlled Environment*

Some new societal uses will increase the need for some SVHCs....

Example of electric vehicle, battery technology

Different battery chemistries

Li ion batteries have highest energy densities and are therefore used in electronics, automotive and energy storage systems

Some new societal uses will increase the need for some SVHCs....

Materials optimisation is in first instance driven by technical performance and cost considerations

Cathode material optimization One big family of products

LCO, all grades of NMC, NCA: all layered materials sharing:

- crystal structure
- · base manufacturing concepts

Exact properties depend, among others, on relative ratio metals in metal site

umicore

Some new societal uses will increase the need for some SVHCs....

The balancing of **new economic needs for different EU-EHS policies** requires therefore comprehensive attention for exposure and materials flow management over the complete "product life cycle"... for every step...

Life Cycle Stages of Cobalt in Battery Value Chain - REGULATORY

Chemicals and Circular Economy: effectively closing the loop

CE and REACH goals are not incompatible but require a *risk controlled environment*

Closing the loop through reuse or materials recycling improves substance performance!

Some conclusions

Some overall conclusions from the workshop

Stimulating sustainable substitution were relevant preventing regretable substitution for metals but how?

- Concept of (better) **INFORMED substitution**, some ideas:
 - Stop the "linear" thinking and allow for "more circular integrated thinking" (including optimizing recycling)
 - IND: anticipate and think in short-medium and longer term objectives in respect to the potential for substitution (eg exposure reduction, changes in materials selection or technologies, breakthrough changes)
 - IND: Better communication of RMM expectations and contributions in the supply chain
 - ALL: more, earliear and better prioritisation (when? During RMOa, before, ???)

THANK YOU

More information, contact: <u>France.capon@epmf.be</u> <u>Verougstraete@eurometaux.be</u> <u>Waeterschoot@eurometaux.be</u>

S @Eurometaux

www.eurometaux.eu

Avenue de Broqueville 12 | B-1150 Brussels | Tel: +32 (2) 775 63 11 | eurometaux@eurometaux.be

