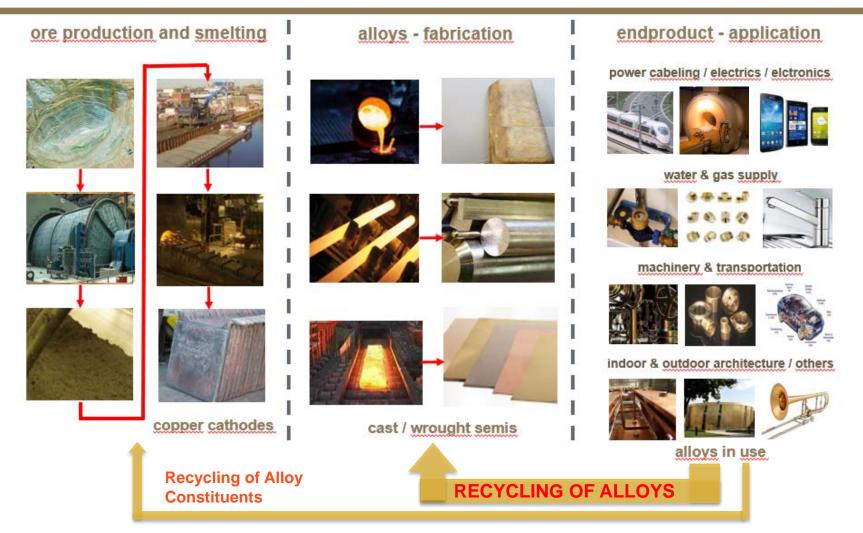


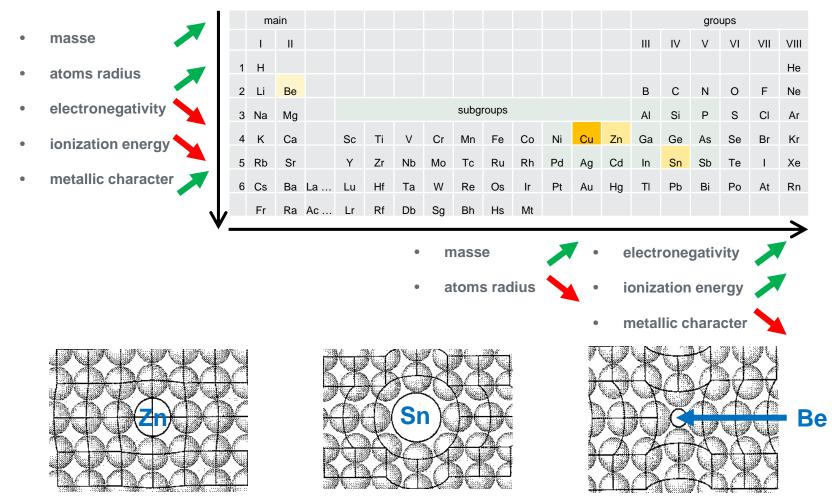
Possibilities and Limits of Lead Substitution in Copper Alloys

Klaus Ockenfeld, Ladji Tikana



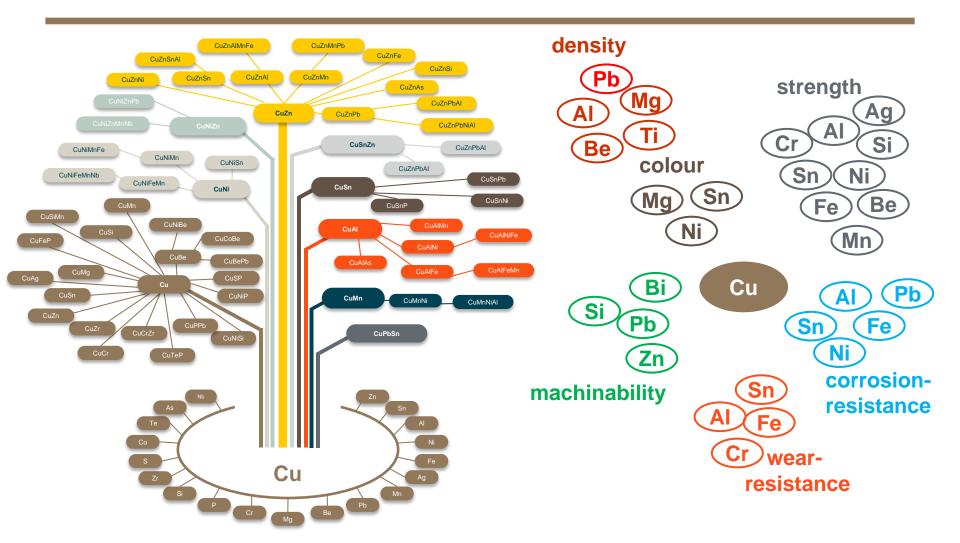
- *briefing:* copper alloys from source to application
- *briefing:* why alloying?
- *industry efforts for substitution:* example from the past
- search for lead alternatives: R & D and challenges
- take home

copper alloys - overview from source to application – a long way

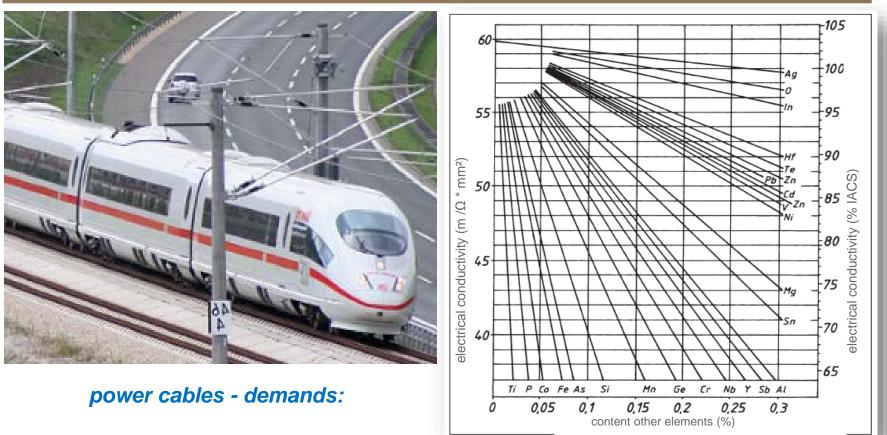


3 || DKI: Possibilities and Limits of Lead Substitution in Copper Alloys

Eurometaux, Antwerp, November 2018



alloying copper – what for? (1) adopt properties to meet technical requirements


4 || DKI: Possibilities and Limits of Lead Substitution in Copper Alloys

alloying copper – what for? (2): alloying elements

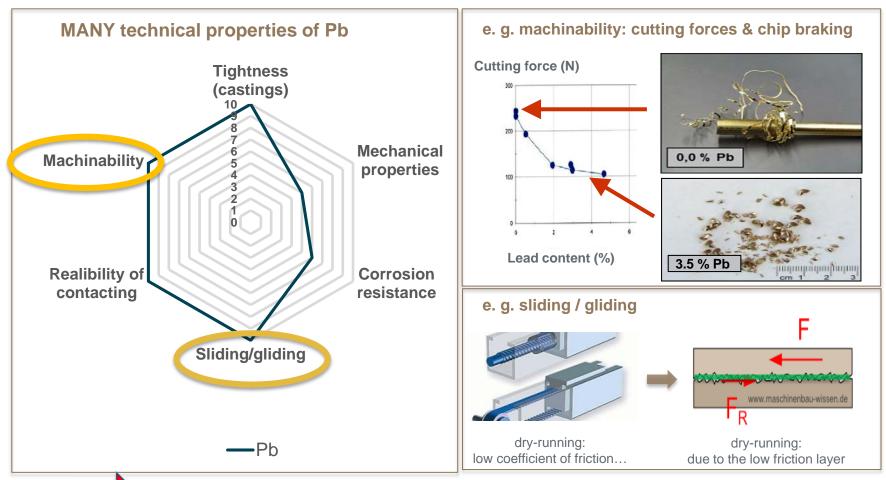
alloying copper – what for?

(3): e. g. steering (just) 2 properties for a specific application – challenging enough

- high strength under mech. stress conditions
- keep high elect. conductivity

technical solutions: Cu-Mg or Cu-Cd Alloys market solution: Cu-Mg

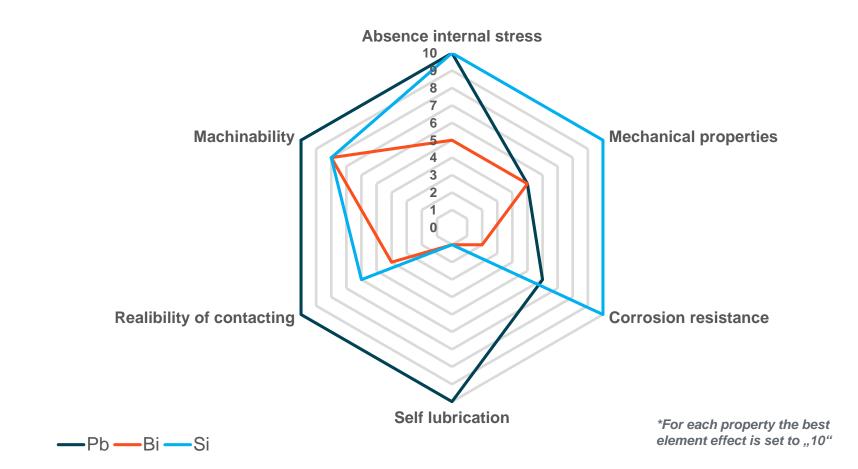
substitution of lead


(1) screening the periodic system

IA																	VIIIA
1																	18
1 H	ПА											ША	IVA	VA	VIA	VIIA	2 He
1.008	2											13		15	16	17	4.003
3 Li	4 Be	Periodic Table of the Elements									5 B	6 C	7 N	8 0	9 F	10 Ne	
6.941	9.012	i critotic insite of the Litements										10.81	10.011	14.007	45.95.	18.998	20.180
11 Na	12 Mg	ШВ	IVB	VB	VIB	VIIB		VIII		IB	ΠВ	13 Al	Si	15 P	16 S	17 Cl	18 Ar
22.990	24.305	3	4	5	6	7	8	9	10	11	12	26.98	28.086	30.974	32.065	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33		35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.409	69.723	72.64	74.921	78.96	79.904	83.798
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.818	118.710	.41.76	127.60	126.904	131.293
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.905	137.327	174.967	178.49	180.948	183.84	186.207	190.23	192.217	195.078	196.967	200.59	204.383	207.2	108.980	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
(223)	226.025	(262)	(261)	(262)	(266)	(264)	(277)	(268)	(281)	(272)	(285)	(284)	(289)	(288)	(293)	(294)	(294)

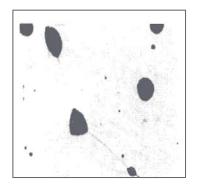
57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
138.906	140.116	140.908	144.24	(145)	150.36	151.964	157.25	158.925	162.500	164.930	167.259	168.934	173.04
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
227.028	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)

substitution of lead (2) properties of lead

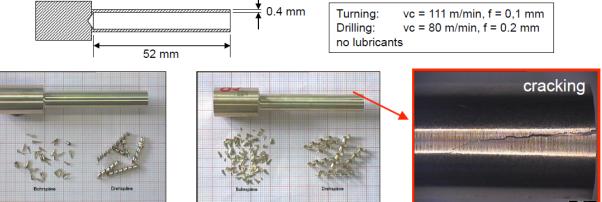


Pb technically not easy to replace \rightarrow the "one size fits all" problem

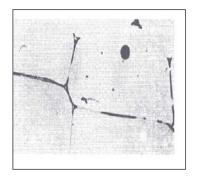
substitution of lead



(3) comparison with the 2 substitution favourites



substitution of lead (4) results on Bi research (a)



Lead


```
wrought CuZn40Bi1.5 (104 HB)
```

wrought CuZn40Bi1.5 (104 HB) Source: Wieland

Bismuth

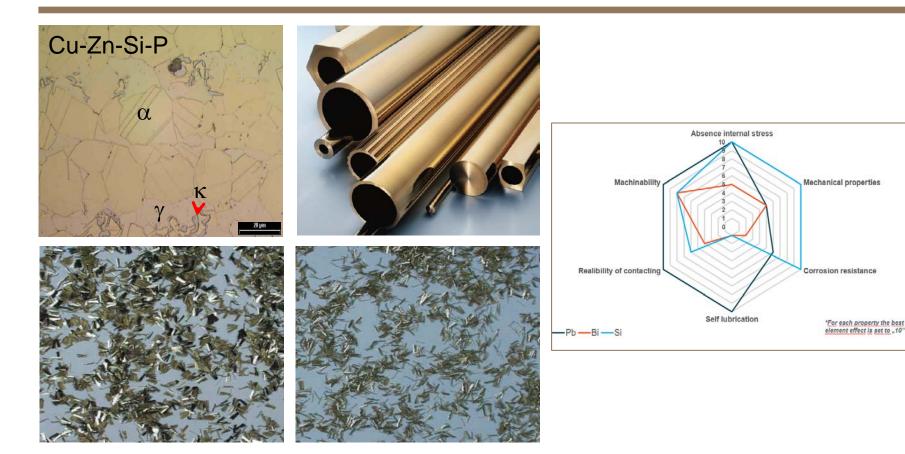
Bi particles expand during solidification

wrought CuZn39Pb3 (150 HB)

 \rightarrow high susceptibility for stress corrosion cracking

- Bi containing alloys cannot match wrought leaded alloys in terms of reliability of machined parts
 - → complex machining operations cannot be realized with Bi containing alloys

substitution of lead (4) results on Bi research (b)



11 || DKI: Possibilities and Limits of Lead Substitution in Copper Alloys

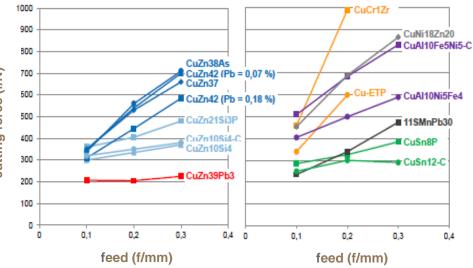
Eurometaux, Antwerp, November 2018

substitution of lead (5) results on Si research

≻Silicon confers free cutting ability and high strength
 ≻But a new phase appears → no lubrificating behaviour and changes in the forming ability

challenges to be solved -

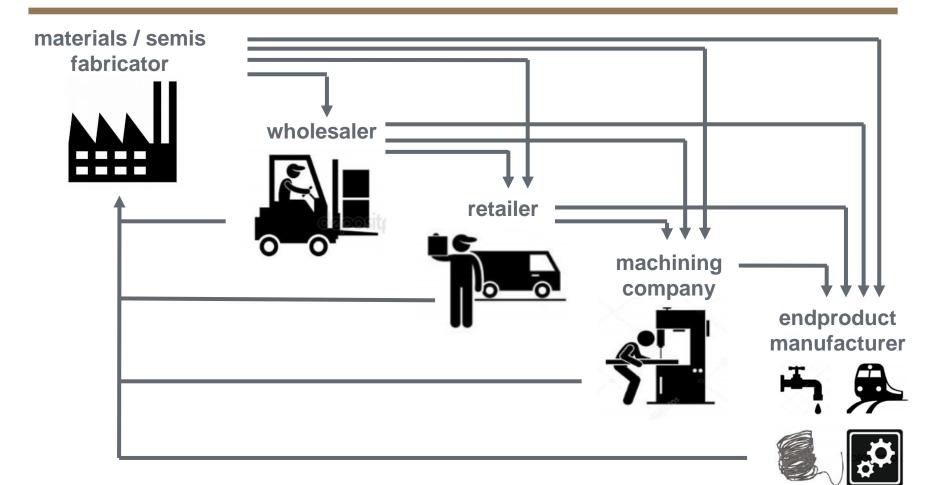
further down stream (1): technical needs


just to mention:

* it took > 1 decade to adopt down stream world to use of Si brasses * still: many technical applications and needs NOT covered by actual solutions

domino effects of a new alloy on R & D downstream:

- development / adoption lubricants
- development processes
- development machining tools



R & D cutting tools:

challenges to be solved further down stream (2): communication

- Leaded copper alloys in use / needed for ALL AREAS of TECHNOSPHERE
- Cu-industry CONTINUOUSLY driving Cu alloys R & D (incl. search for critical elements substitution)
- *Pb OUTSTANDING as ENABLER for MANY technical alloy properties*
- → Technical properties of Pb in alloys can PARTLY be taken over by other elements but <u>NO SOLUTION "ONE FITS ALL"</u>
- \rightarrow **Proposed alternatives show limits:**
- Cu-Zn-Si-alloys: approved "good material" but LIMITED in application spectrum
- Cu-Zn-Bi-alloys: limited in application spectrum and to suffer from damages & non-recyclability

RESOURCE EFFICIENT EUROPE

- an ONION with many shells, challenges and demands

Pb containing Cu alloys: necessities & questions from a TECHNICAL POINT of VIEW

- <u>technical limits</u>: Cu-industry has significantly reduced Pb use in Cu-alloys over time and as far as technically feasible
 → no restrictions unless sustainable alternatives available; support R & D on alternatives
 - → no restriction on use of Pb containing alloys where safe use is given
- <u>products in use</u> (urban stock): lasts for decades or even centuries. Pb-delution?
 → keep functioning recycling loops (existing standards)
 - \rightarrow secure future use of scrap
 - \rightarrow avoid regrettable substitution
- <u>conflicting interests</u>:
 - \rightarrow resource efficiency policy vs. chemicals policy
 - \rightarrow chemicals policy vs. resource efficiency policy

1 || DKI: Possibilities and Limits of Lead Substitution in Copper Alloys

future jobs competitiveness innovation & invest use and recovery of ressources

CIRCULAR ECONOMY

adopted busines models new opportunities harmful subsidies regulation

Thank you for listening

Dr Klaus Ockenfeld, Dr Ladji Tikana

Deutsches Kupferinstitut Berufsverband e. V. Heinrichstr. 24 D-40239 Düsseldorf, Germany ++49 (0) 211 – 239 469-0 klaus.ockenfeld@copperalliance.de ladji.tikana@copperalliance.de

