Stimulation of Substitution within a Circular Economy perspective, in the metals sector: concepts and examples

University of Antwerp: Wednesday 7 November 2018

THE FURNACE OF INNOVATION

Dirk Goris - Bi challenging the recycling of Copper, Antwerp, Belgium, November 2018

Dirk Goris – Bi challenging the recycling of Copper, Antwerp, Belgium, November 2018

(\mathcal{M})

One group, two sites

- Founded in 1919
- 782 Million EUR of revenue in 2016
- 430 employees at Metallo Belgium and 85 employees at Metallo Spain
- 40% of growth in workforce in last 10 years

We are an international company, that excels in **recycling** and **refining** non-ferrous materials.

 \mathcal{M}

Waste services



Product range

We combine our **unique technology** and **know-how** to provide a variety of nonferrous metal products, intermediates and minerals to our customers.

Refined metals

- Cu cathodes "B grade" ٠ min. 99,97% Cu
- Sn ingots "MC brand" ٠ LME registered, Low Lead, CFSI compliant "conflict free", min. 99,95% Sn
- Pb ingots "MC brand" soft lead min. 99,9% Pb and hard lead on customer specifications

Copper cathodes Quality: 99,98 % Cu

Hard lead Custom made Lead Antimony alloys

Lead ingots Quality: 99%

Product range

We combine our **unique technology** and **know-how** to provide a variety of non-ferrous metal products, intermediates and minerals to our customers.

Intermediates

- Cu anodes and Cu blister
 ca. 99% Cu on customer specifications
- Anode sludges
- Nickel Sulphate Solution
- Nickel Briquettes
- Zinc Oxides

Copper anodes Quality: 99 % Cu

Anode slimes Quality: 0,5% Ag, 0,05% Au

Nickel briquettes Quality: 90% Ni

Nickel Bleed Quality: 5% Ni

ZnO-dust Quality: 45% Zn

Product range

We combine our **unique technology** and **know-how** to provide a variety of non-ferrous metal products, intermediates and minerals to our customers.

Minerals and granulates

- The final slag is a granulated iron silicate and is mainly used in construction or as raw material for the cement industry.
- METAMIX®, Iron Silicate Slag
- ELMIX®, Iron Silicate Slag
- KORANEL®, Clean synthetic minerals for sustainable building applications

Technology

In accordance with supplier's requirements and international standards, **samples** are taken for **high quality chemical assaying**

Our **technologies**, in most cases invented and realized by our own engineers, give us a **unique worldwide position** in the valorization of metal and metal compounds

We treat materials in a **responsible**, **sustainable** way and according to

'best reference standards'

- We are "special" ...
 - multi-metal producer of Cu, Sn, Pb, Ni, starting from 100% "secondary" input materials
 - o some unique, own desiged, production processes
 - specialized in converting low grade "complex" materials (many SVHCs, containing nearly the entire Table of Mendeljev ...) completely into valuable products for others
 - o "<u>zero</u> waste" policy
 - sourcing world wide
 - small as copper producer, but main European tin producer ...

... in a challenging environment

- The Copper industry can be affected by evaluation, authorization or restriction efforts on other substances, used in manufacturing and production of copper products
- Examples
 - Heavy pressure on the use of Pb :
 - "ban" or restriction in some applications \rightarrow substitution
 - reducing the classification cut-off percentage of Pb will influence transport and marketing of copper concentrates, intermediates, alloys ...
 - copper scrap cannot be refined without making Pb containing by-products at the same time ...
 - Cd, the "forbidden" element :
 - almost no "accepted" applications anymore, but what with the Cd that is already present in intermediates ?

Bismuth, challenging the recycling of Copper and the metal primary balance, is this a right solution from a REACH-Circular Economy perspective?

Introduction

- leaded copper alloys have historically been used for many purposes (e.g. casted components used in the potable water supply system)
- worldwide increasing pressure to remove hazardous metals, in particular lead, from both consumer and industrial applications
- some examples :
 - Europe : RoHS, REACH, IED, ...
 - USA : <u>Reduction of Lead in Drinking Water Act</u>, January 4, 2011

"lead free" = "not more than a weighted average of 0.25% Pb when used with respect to the wetted surfaces of pipes, pipe fittings, plumbing fitting, and fixtures."

Substitution of Pb by ...

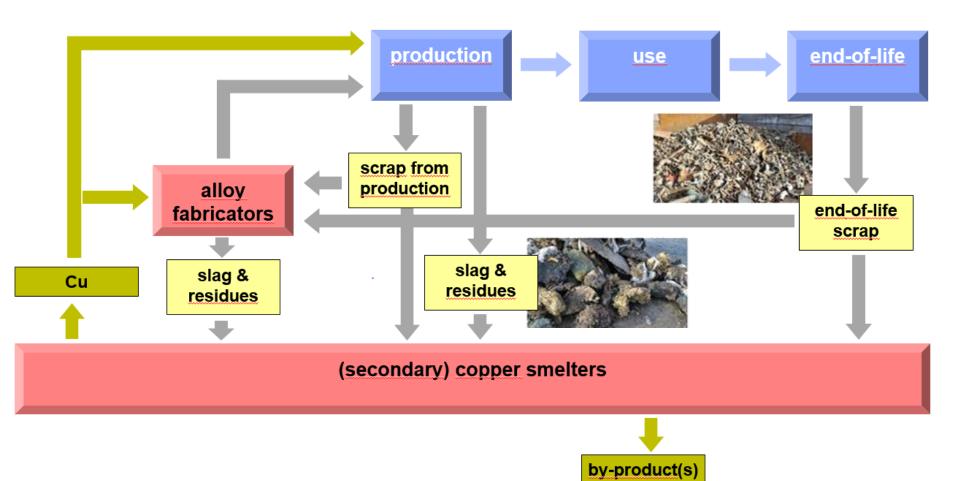
Bismuth	Silicon				
"bismuth bronze", "bismuth brass"	"silicon bronze", "silicon brass"				
a = copper alloy containing	= copper alloy containing				
 Bismuth : typically 1-3%, but sometimes more 	Silicon : typically 2-5%				
 Other elements such as zinc, tin, nickel, 	Other elements : mainly zinc (3-22%)				

Examples (not exhaustive ...)

	Leaded Cop	per-Based	Lead-Free Copper-Based					
	C84400 Leaded Semi-Red Brass	C83600 Leaded Red Brass	C89833 Lead-Free Bismuth Brass	C89836 Lead-Free Bismuth Brass	C87850 Lead-Free Silicon Brass	C87610 Lead-Free Silicon Bronze	C87600 Lead-Free Silicon Bronze	
Copper (%)	79.0 - 82.0	84.0 - 86.0	86.0 - 91.0	87.0-91.0	75.0-78.0	90.0 min	90.0	
Lead (%)	<mark>6.3 – 7.7</mark>	<mark>4.0 – 5.7</mark>	0.09 max	0.25 max	0.09 max	0.09 max		
Zinc (%)	7.0 - 10.0	4.3 - 6.0	2.0 - 6.0	2.0-4.0	18.0-22.0	3.0-5.0	5.5	
Bismuth (%)			<mark>1.7 - 2.2</mark>	<mark>1.5-3.5</mark>				
Tin (%)	2.3 - 3.5	4.3 - 6.0	4.0 - 6.0	4.0-7.0	0.30 max			
Silicon (%)	0.005 max	0.005 max	0.005 max	0.005 max	<mark>2.7-3.4</mark>	<mark>3.0–5.0</mark>	<mark>4.5</mark>	
Phosphorus (%)	0.02 max	0.03 max	0.050 max	0.06 max	0.05 - 0.20			
Aluminum (%)	0.005 max	0.005 max	0.005 max	0.005 max				
Antimony (%)	0.25 max	0.25 max	0.25 max	0.25 max	0.10 max			
Iron (%)	0.35 max	0.25 max	0.30 max	0.35 max	0.10 max	0.20 max		
Manganese (%)					0.10 max	0.25 max		
Nickel (%)	0.8 max	0.8 max	1.0 max	0.9 max	0.20 max			
Sulfur (%)	0.08 max	0.08 max	0.08 max	0.08 max				

Why bismuth ? Why silicon ?

Bismuth	Silicon		
 "bismuth bronze", "bismuth brass" = copper alloy containing Bismuth : typically 1-3%, but sometimes more Other elements such as zinc, tin, nickel, 	 "silicon bronze", "silicon brass" = copper alloy containing Silicon : typically 2-5% Other elements : mainly zinc (3-22%) 		

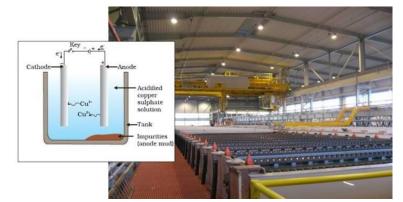

Both solutions acceptable

- from a technical point of view ("required performance of product")
- from a human health point of view ("not hazardous")

But ... we have to look to the entire life cycle, and even further...

Life cycle of copper alloys

2018.11.07 Dirk Goris – Bi challenging the recycling of Copper, Antwerp, Belgium, November 2018


Technical feasibility during recycling Refining of Copper - pyrometallurgy

- Based on more/less selective reaction of oxygen with "impurities" in liquid "copper", depending on
 - Properties of "impurity"
 - o Temperature
- Graphical presentation in "free energy" diagram : the more negative ∆G, the easier the oxidation of the element
- **Conclusion** :
 - Bi : almost impossible to remove from copper
 - Si : easy to remove from copper

Technical feasibility during recycling Refining of Copper - electrorefining

Electrochemical rea	Standard reduction potential (25°C), volts		
$Au^{3+} + 3e^- \rightarrow$	Au°	1.5	
$Ag' + c^- \rightarrow$	Ag°	0.80	
$Cu^{2+} + 2e^- \rightarrow$	Cu°	0.34	
$BiO^+ + 2H^+ + 3c^- \rightarrow$	$Bi^{\circ} + H_2O$	0.32	
$IIAsO_2 + 3H^+ + 3e^- \rightarrow$	As ^o + 2H ₂ O	0.25	
$SbO^{*} + 2H^{+} + 3e^{-} \rightarrow$	$Sb^{\circ} + H_2O$	0.21	
$2H^+ + 2e^- \rightarrow$	H ₂	0.0000	
		$(pH = 0; pH_2 = 1 \text{ atmosphere})$	
$Pb^{2+} + 2e^- \rightarrow$	Pb°	-0.13	
$Ni^{2+} + 2e^- \rightarrow$	Ni°	-0.26	
$Co^{2+} + 2e^- \rightarrow$	Co°	-0.28	
$Fe^{2+} + 2e^- \rightarrow$	Fe°	-0.45	

- Based on more/less selective dissolution / deposition by electrical current in aqueous solution, depending on the properties of the "impurity"
- Indicated by "standard reduction potential" :
 - the lower, the easier to dissolve into solution,
 - the higher, the easier to deposit from solution

Additional complication :

• formation of "floating" slime in solution \rightarrow contaminating cathode

Conclusion

- Bi : difficult to remove from copper
- Si : not relevant : Si will not "survive" the pyrometallurgical refining

Technical feasibility during recycling Quality requirements for Copper

	ASTM	B-115	BS EN 1978	IWCC High	
Element	Grade 1 Grade 2		1970	Grade	
% Cu+Ag		99.95			
Se (ppm)	2	10	2	2	
Te (ppm)	2	5	2	2	
Bi (ppm)	1	3	2	2	
Bi+Se+Te (ppm)	3		3	3	
Sb (ppm)	4	15	4	4	
Pb (ppm)	5	40	5	5	
As (ppm)	5	15	5	5	
Fe (ppm)	10	25	10	10	
Ni (ppm)	10	20			
Sn (ppm)	5	10			
S (ppm)	15	25	15	15	
Ag (ppm)	25	70	25	25	
Co (ppm)					
Mn (ppm)					
Zn (ppm)					
Total (ppm)	65		65	65	

- Properties of "copper" are affected by impurities
 - \rightarrow limitations, "standards"
- Customers usually require purer copper than listed in the standards
- Main effect of Bi : grain boundary embrittlement

General conclusion :

- Detrimental for wire drawing applications
- Bi content should be reduced to < 1 ppm

Technical feasibility during recycling Implications for Copper smelters & refiners

- most final products are made from copper cathodes
- because of contamination of cathodes from Bi in anodes
 - \rightarrow limitation on Bi content of copper anodes (indication : 50-200 ppm)
- because of limited refining capacity by oxidation (in producing anodes)
 - \rightarrow dilution required at input
- dilution requires more detailed knowledge on input composition
 - \rightarrow requires severe efforts on quality control of input material

Technical feasibility during recycling Implications for smelters & refiners

- most final products are made from copper cathodes
- because of contamination of cathodes from Bi in anodes
 - → limitation on Bi content of copper anodes (indication : 50-200 ppm)
- because of limited refining capacity by oxidation (in producing anodes)
 - \rightarrow dilution required at input
- dilution requires more detailed knowledge on input
 - → requires severe efforts on quality control of input material

Technical feasibility during recycling Quality control of input (1)

- vital aspect for economical and technical performance of the smelter
- purchase price of raw materials (scrap, slag, residue, ...) is affected by Bi content
 - Bismuth is penalized by all copper smelters, reflecting the technical difficulty to separate bismuth from copper
 - When the Bi content exceeds a certain limit value, the material can even be refused

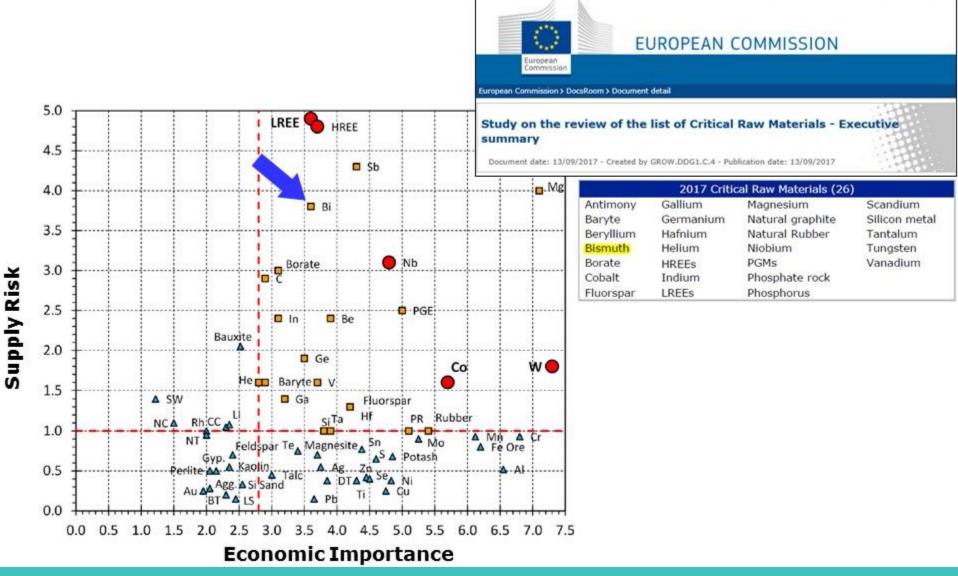
• quality control on slag & residues ranges from

- "<u>easy</u>" for relatively homogeneous material by common practice of sampling and assaying according to "good practice" procedures
- to "very difficult" for very heterogeneous materials,
 - requiring technical treatments as sorting out (based on visual interpretation), seiving, crushing, grinding, ...
 - requiring right interpreation of visual aspects

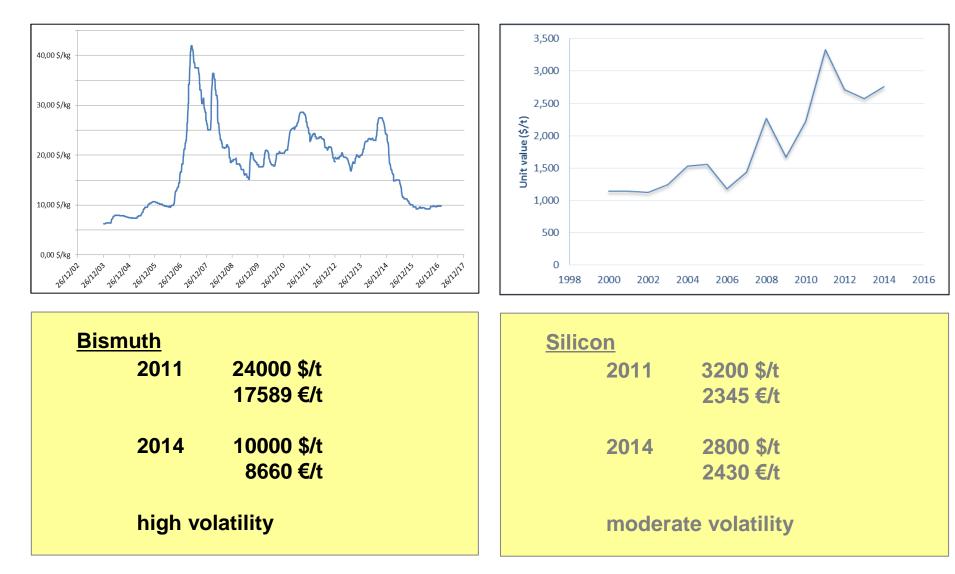
Technical feasibility during recycling Quality control of input (2)

quality control of scrap :

- Often combination of
 - visual inspection
 - recognition of distinctive articles with their known composition in the scrap (based on assays and historical data)
 - estimation
- Usually only focussed on some main elements
- If harmfull elements are expected, much more time and efforts are needed to quantify them
 - To safeguard the refining process
 - To safeguard the final product specifications
- However : representative sampling ???


(Natural) availability

		Bismuth	Silicon
elemental abundance ranking concentration (cr 	ust)	69 th place 8 ppb = 0.000008 %	2 nd place 28%
production world USA main producers 		2016 : 0 t	2016 : ca. 2780000 t 2016 : 310000 t (incl. FeSi) Australia, Brazil, Canada, South Africa, Norway
□ source		mainly as by-product of lead refining	direct smelting and reduction of quartz
consumption USA 		2016:733 t (reported), 1670 t (apparend)	2016 : > 200000 t (incl. FeSi)


(Natural) availability

Availability is reflected in metal price...

General overview

	Bismuth	Silicon		
 technical level of difficulty quality control refining 	 difficult/time-consuming difficult / by dilution 	 not relevant easy 		
availability	□ scarce	abundant		
impact on market	 high (price increase , substitution,) 	□ low		
 economics metal price purchase scrap 	 high penalties / refusal 	lowno effect		

- Bi may be an acceptable substitute for Pb in Cu alloys from the point of view from manuafacturing and downstream use ...
- …but has some other drawbacks :
 - Economic feasibility may be a challenge due the limited availability (REACH)
 - Each additional ton of Bi requires >100 t Pb to be recovered from primary resources (Sustainablility)
 - Technical feasibility of recycling will be significantly jeopardized (no "design for recycling"...) (Circular Economy)

QUESTIONS ?

