CEFIC/EUROMETAUX/FECC/DUCC Workshop

How to classify Mixtures under CLP HEALTH HAZARDS

Acute Toxicity

Helmut Fleig Brussels; 19 May 2014

Options/Decision Tree

A. Apply substance criteria when test data for the complete mixture are available

B. Apply "**bridging principles**", if applicable

D. Translation according to Annex VII (CLP specific)

A. Test Data for the whole Mixture

Application of classification criteria for substances (Table 3.1.1) Example 1:

A paint tested as aerosol (mist)

• Result. LC50 (rat): 4.7 mg/l/4h

Acute Tox.4; H 332=Harmful if inhaled

Rationale: For dusts and mists: $(1 < ATE \le 5 mg/l/4h)$

B. Bridging Principles (Annex I 1.1.3)

Applicable bridging principles:

- Dilution
- Batching
- Concentration of highly hazardous mixtures
- Interpolation within one hazard category
- Substantially similar mixtures
- Changes in the composition of a mixture
- Aerosols

C. Use of Ingredient Information

Calculation Approach for Acute Toxicity: Combined use of toxicities and concentrations of the components by a weighting summation procedure taking ATE* values and the concentrations of the relevant ingredients into account

ATE = Acute Toxicity Estimate (e.g. LD₅₀ / LC₅₀ = Median Lethal Dose/Concentration)

Additivity Formula 1 (Annex I 3.1.3.6.1)

Data / Information available for all ingredients:

$$\frac{100}{\text{ATE}_{\text{mix}}} = \sum_{n} \frac{C_i}{\text{ATE}_i} \quad \text{(cf. UN Transport)}$$

₅₀)

- Concentration of ingredient i
- i = Individual Relevant ingredient from 1 to n
- **n** = Number of ingredients

Application of Additivity formula 1 generally for one exposure route, unless relevant evidence of toxicity for other routes (Details Annex I 3.1.3.2)

Ingredients

Ingredients to be taken into account:

- Substances classified in one Acute toxicity Category.
- "Relevant Ingredients "= Concentrations to be taken into account:
 - GHS: 1%, unless suspect that relevant: < 1%
 - CLP ("Generic cut-off values"; Annex I Table 1.1):

Cats.1-3: 0.1%

Cat.4: 1%

• Substances with unknown acute toxicity: $\geq 1\%$

Ignored ingredients:

- Presumed not acutely toxic (e.g. water, sugar)
- Proven not to be classified based on valid data/information
- Substances with unknown acute toxicity if < 1%

Example 2

Acute oral data available for all ingredients:

 $100 / ATE_{mix} = \frac{60}{250} + \frac{35}{750} + 0 = 0.2866$

 $ATE_{mix} = 100/0.2866 = 349 \text{ mg/kg}$

à Cat. 4 (300 < ATE ≤ 2,000 mg/kg; Table 3.1.1)

Options in Case of unknown Toxicity

Ingredients with unknown acute toxicity concerning a relevant exposure route (data gap):

- No respective test data
- "...without any useable information ... "
- Case 1: Unknown ingredients < 1% Not relevant; not taken into consideration
- Case 2: Unknown ingredients \geq 1% 10%

Application of Additivity formula 1

à Dilution effect

• Case 3:Unknown ingredients > 10%

Application of the modified Additivity formula 2 taking unknown ones into consideration

à Potential impact on classification

Ingredients without respective acute toxicity test data, but with other useable information: Derivation of a converted Acute Toxicity point Estimate (cATpE)

Additivity Formula 2 Covering unknown Ingredients (§ 3.1.3.6.2.3)

$\frac{100-(a^{\circ}Cunknown if >10\%)}{ATE_{mix}} = a_{n}^{\circ} \frac{C_{i}}{ATE_{i}}$

ATE	=	Acute Toxicity Estimate	(e.g. LD ₅₀ /LC ₅₀)
-----	---	-------------------------	--

- C_i = Concentration of ingredient i
- i = Individual Relevant ingredient from 1 to n
- **n** = Number of ingredients

Conversion derived from relevant Information (Table 3.1.2)

- A. Classification category without respective toxicity data
- B. Experimentally obtained acute toxicity range values (e.g. for oral toxicity: 300 > LD50<2,000mg/kgbw)
- C. Other relevant information:
- Extrapolation between routes
- Evidence from human exposure
- Evidence from other toxicity studies
- SARs

EXPERT JUDGEMENT!

Conversion Table

(Extract UN GHS; Table 3.1.2)

Exposure Routes	Classification Category or Acute Toxicity Range Estimates (ATE)	Converted Acute Toxicity point Estimates (cATpE)
oral	0 < Category 1 £ 5	0,5
(mg/kg body weight)	5 < Category 2 £ 50	5
	50 < Category 3 £ 300	100
	300 < Category 4 £ 2 000	500
	2000 < Category 5 £ 5 000	2500
<u>dermal</u>	0 < Category 1 £ 50	5
(mg/kg body weight)	50 < Categoriy 2 £ 200	50
	200 < Category 3 £ 1 000	300
	1 000 < Category 4 £ 2 000	1 100
	2000 < Category 5 £ 5 000	2500

Example 3-1 Acute dermal Toxicity

1.Data/information to be used in the additivity formula :

Ingredient	Concentration (%)	Test data	Classification	cATpE (mg/kg) (UN GHS Table 3.1.2)	Remarks
1	17			n.a.	Unknown acute dermal toxicity
2 (Mixture 1)	35		5	2,500	Relevant only in UN GHS
3 (Water)	13			n.a.	Ignored, not acutely toxic
4 (Mixture 2)	15		4	1,100	4
5	19.2	 2,000 mg/kgbw (no toxic effects) 		n.a.	Ignored, not acutely toxic
6	0.8			n.a.	Not a "Relevant ingredient" since ≤ 1% and unknown

Example 3-2

Additivity formula 2 applies since > 10% unknown :

$$\frac{100\text{-unknown}}{\text{ATE}_{mix}} = \sum_{n} \frac{\text{Ci}}{\text{ATE}_{i}}$$

 $100-17 / ATE_{mix} = 35/2,500 + 0 + 15/1,100 + 0 + 0 = 0.027636$ $ATE_{mix} = 3,003 \text{ mg/kg}$

à UN GHS: Cat. 5 (2,000 < ATE <= 5,000 mg/kg; UN GHS Tab. 3.1.1)

à CLP: No classification

Example 4

Application	Different phases in inhalation exposure. Extrapolation		
	Test Data	Classification	Rationale
Available information	Use /exposure as aerosol (mist)		
	Animal data (rat): LC ₅₀ (mg/I/4h)		
Ingredient 1 solid (6%)		Category 4	Conv. ATE (mg/l/4h) = 1.5 mg/1/4h
Ingredient 2 solid (11%)	0.6	Category 3	$ATE = LC_{50}$
Ingredient 3 solid (10%)	6 (dust)	-	Neglected, since not classified in any acute category.
Ingredient 4 liquid (40 %)	11 (vapour)	Category 4	Conv. ATE (mg/I/4h) = 1.5 mg/1/4h, assuming identical category for vapour and mist by expert judgement
Ingredient 5 (33%)		-	Water; neglected
Rationale	Use additivity formula in Annex I, 3.1.3.6.1, as information is available for all ingredients. 100/ATE _{mix} = 6/1.5+11/0.6+0+40/1.5+0 = 49 à ATE _{mix} = 2.04 mg/I/4h à Category 4		
			(ECHA CLP Guidance) 15

Mixtures in Mixtures (1)

Option 1 : Treat all constituents (i.e. also added mixtures) like substance ingredients :

- 1. Conversion of acute toxicity hazard categories of the ingredient mixture to converted AcuteToxicity point Estimates = cATpEs according to table 3.1.2
- 2. Application of Additivity formula(e) with known ATEs and/or cATpEs of the constituent mixture(s).

3. Use Table 3.1.1 with ATE

> Hazard category of the new mixture

A Mixture in a Mixture Example 5: Option 1

Data given:

Mixture A: 92% Ingredient 1(LD50>2000 mg/kgbw; NC)+8% Mixture 1

Mix 1: 88% Ingr. 2(ATE= 145; Cat. 3) +12% Ingr. 3 (ATE=320; Cat. 4)

What is the ATE (oral) of the new mixture A (Ingr.1+mixture 1)? Option 1:Treatment of mixture 1 like a substance ingredient:

- Mixture 1= 100%: (%Ingr.2 /ATE Ingr. 2+ %Ingr.3/ATE Ingr. 3) = 100:(88/145+12/320)=>155 mg/kgbw
- Mix A= 100/ ATE Mix 1: 8/155> ATE 1,936 mg/kgbw

à Cat. 4

Mixtures in Mixtures (2)

Option 2: "**Break down**" the added mixture into its relevant ingredients: Identification of all individual ingredient substances with their absolute concentrations in the final mixture, then application of the Additivity formula

- Necessary information
 - Composition (relevant ingredients)
 - Classification of the constituents
 - Toxicity data of the constituents/ingredients
- If complete information available **à** Exact classification
- Problem: CBI , import

Therefore trustful cooperation between DU/formulator and manufacturer/importer

Choice of appropriate option dependent on data base

SCLs in Acute Toxicity? No!

The SCL concept is not compatible with the approach using the GHS Additivity formula, which takes the toxic potency directly via the ATE into account.

Entries in Annex VI:

- Table 3.1 (GHS): No SCLs
- Table 3.2 (DSD): SCLs, e.g. Xylene 12.5%

Special Cases/Pitfalls (1)

- 1) Classification as Acute Tox. in Annex VI, which is not warranted by robust data:
- E.g. Xylene (601-022-00-9) R 20/...
- LC 50: 29 mg/l/4h (Key 1 study in CSB)
- How to procede?
 - No consideration of xylene as ingredient: Not allowed
 - Use cATpE (Table 3.1.2): Not necessary.
 - Use the valid test value, i.e. 29 mg/l/4h: No consistency with criteria
 - Use upper limit for Acute toxicity classification (Inhalation; vapour), i.e. 20 mg/l/4h: Proposed

Special Cases/Pitfalls (2)

- 2) No acute classification in Annex VI at all or none concerning a specific route **a** No certainty that non-classification is proven, i.e. based on data Check literature for test data or other relevant information, e.g. in ECHA Registered substances; SDSs
- 3) **Range % values** for harzardous ingredients: Basis for Additivity formula(e) is 100%

Ingred.	Conc.(%)	ATE (Oral)	<u>50 or 100 or 110</u>	= 20/250 + 30/350 ? or
1	20-50	250	ATE _{mix}	= 50/250 + 60/350 ? or?
2	30-60	350		

- Ask supplier for more exact information ("Suppliers... shall cooperate..."; CLP § 4.9)
- Apply worst case, i.e. use highest concentration from given range/and or from most hazardous ingredient
- Perform separate evaluations with calculated maximum values for a category taking 100% for calculation 21

Special Cases/Pitfalls (3)

4. Calculation of the maximum concentration in a certain category: Inhalation vapour:

1. Data given: Cat. 4 for ingredient A; no respective classification for the other ingredients Calculation:

100/20* = x/11**--> x= 55%

20*= upper cut-off for classification of vapours in Cat. 4

11**: cATpE for substances classified in Cat.4, but without toxicity data (s. Table 3.1.2)

2. Data given: LC 50 available for ingredient B: LC50: 15 mg/l/4h); no respective classification for the other ingredients

Calculation:

100/20* = x/15 --> x=75 %

Conclusion :

- 1. No classification for mixtures without tox data containing $\,<55$ %
- 2. No classification for mixtures with toxicity data < 75 %

Comparison with pre-CLP: Acc. to DPD no classification only if ingredients A or B < 25%, provided there are no other acutely toxic ingredients

Special Cases/Pitfalls (4)

5) Non-appropriate ATEs from animal data for use in the Additivity formula:

a) Methanol: LD50 oral (rat) > 10,000 mg/kgbw, but basis for Acute Tox.3 is human evidence (lowest valid Lethal dose:
300 mg/kgbw)

Options:

- Use cATpE: 100 mg/kgbw
- Use robust human data without "uncertainty default ": 300 mg/kgbw. Proposed (see ECHA CLP Guidance)

b) Other LD50 values from certain substance classes

Aromatic amines or nitro compounds:

e.g. Aniline LD50 oral (rat): 930 mg/kgbw (ECHA CSB, Key 01) Use cATpEs **100 mg/kgbw** via classification as Acute Tox.3 c) Some chlorinated hydrocarbons

Special Cases/Pitfalls (5)

- 6. Impact of form or physical state concerning Inhalation
- Consideration as vapour: $LC_{50} < SVC$ (saturated vapour conc.)
- Consideration as mist: LC₅₀ close to or > SVC (SVC=0.0412 x MW x vapour pressure (hPa at 20°C)
- Evaluation of **vapour form/phase**: Ingredients which can be ignored
- Solids (no sublimation assumed) in liquid mixtures e.g. polymers, salts
- Pastes, highly viscous substances
- Evaluation of mist (aerosol) form of liquid mixtures: solids (dust data) cannot be ignored
 Remark: Justification for ignoring ingredients necessary

Special Cases/Pitfalls (6)

Non-appropriate toxicity range values

 e.g. 200 < LD₅₀ (oral) ≤ 2,000 mg/kgbw
 Issue: ATE ≤ or > 300 mg/kgbw ?

Options:

- S Classify in Cat. 3 or
- **§** Ask for full test report
 - Check which oservations (lethality, significant clinical signs) at 200 and 2,000 mg/kgbw)
 - Decision of category (expert judgement)
 - If Cat. 4: a Use cATpE of 500 mg/kgbw

Comparison CLP vs. DPD

CLP	DPD
Preference for test results with whole mixture Possibility of use all Bridging principles provided necessary data are available	Preference for test results with whole mixture Only the Bridging principle for changes in the composition of a mixture is applicable
Use of an additivity principle for an ingredient based classification procedure: - Specific additivity formula taking toxicity via ATEs directly into account (sliding system) Separate consideration of all exposure routes with relevant evidence of toxicity	Use of an additivity principle for an ingredient- based classification procedure : -Staggered summation using a weighting system based on classification Combined consideration of all exposure routes with a classification
Data gaps: <10% of the ingredients: not taken into consideration in calculation, but a diluting effect > 10% ingredients: taken into consideration in calculation with potential impact on classification (generally more severe)	Data gaps: Not taken into consideration. Generally a diluting effect

Options for classification procedures

No such options

Conclusion

- Only little correspondence with DPD criteria
- New, partly complex procedures
- Optional approaches
- Sometimes expert judgement needed
- The clock is running although still one more year for mixture classification acc. to GHS/CLP.

Thank you!

Dr. Helmut Fleig Consulting ChemSafe/HFC Viktoriastr. 5 68165 MANNHEIM Tel. +49 621 414166 helmutfleig@t-online.de

www.helmut-fleig-consulting.de