Section	Content					
Title of spERC	Manufacture of metal compounds					
spERC code	Eurometaux 1.2.v2.1					
Scope	Limitations of coverage compared to ERC relate to:					
	User groups: Manufacture of metal compounds. This SPERC does not construction of organic or metallo-organic substances and mining and ore treatment at the mine site and producers of massive metal.					
	Substance groups or functions: Release defaults are derived from measured emissions. Metal representativeness of background data:					
	Cadmium Cobalt Cobal					
	 Metal (compound) is defined here in a broad sense. The definition includes alkali metals, alkaline earth metals, transition metals, post-transition metals, metalloids and their compounds but excludes non-metals, halogens, noble gases and metallo-organic compounds. SPERC valid for metals with solid water partition coefficient for suspended matter between 1,000 L/kg and 400,000 L/kg. Types of products: Metal compound Geographical and Time: Release defaults are derived from measured emissions from various EL member states and between 1002 2010 					
	emissions from various EO member states and between 1993-2010.					
Related use	PROC1 PROC2 PROC3 PROC4 PROC86 PROC9 PROC 22 PROC 23					
descriptors	PROC 1, PROC2, PROC3, PROC4, PROC80, PROC9, PROC 22, PROC 23, PROC 26, PROC 27a, PROC 27b SU 14, FRC1					
Operational conditions	Since metal SPERCs are based on measured data at end-of-pipe on-site, all processes are integrated in the release fractions from raw materials handling to cleaning and maintenance.					
	Size of installations: Amount used can vary between 1 and 1,300,000 Tonnes/year. Processing conditions: Open and closed systems, wet and dry processes.					
Obligatory onsite	Air					

RMMs	 Direct air emissions should be reduced by implementing one or more of the following RMMs: Electrostatic precipitators using wide electrode spacing: 5 – 15 mg/Nm³ Wet electrostatic precipitators: < 5 mg/Nm³ Cyclones, but as primary collector: < 50 mg/Nm³ Fabric or bag filters: high efficiency in controlling fine particulate (melting): achieve emission values < 5mg/Nm³. Membrane filtration techniques can achieve < 1 mg/Nm³ Ceramic and metal mesh filters. PM10 particles are removed: 0.1 mg/Nm³ Wet scrubbers: < 4 mg/Nm One or more of these RMMs (of which fabric or bag filters and wet scrubbers are more common) were reported to be present in more than 90% of the sites.
	Overall range of reported RMM efficiencies ranged between 90% and 99.98%. Fugitive emissions should be reduced from material storage and handling, reactors or furnaces and from material transfer points by following hierarchical measures: process optimization and minimization of emissions, sealed reactors and furnaces, targeted fume collection.
	 Water Following IPPC-BAT document, the treatment methods are very much dependent on the specific processes and the metals involved. Direct water emissions should be reduced by implementing one or more of the following RMMs: Chemical precipitation: used primarily to remove the metal ions (e.g. Ca(OH)2, pH 11 procipitation; >00% removal officiency; Eq(OH)3, pH 11;
	 Ca(OF)2, pH 11 precipitation. >99% removal efficiency, Fe(OF)3, pH 11. 96% removal efficiency) Sedimentation (e.g. Na2S, pH 11, >99% removal efficiency) Filtration: used as final clarification step (e.g. ultrafiltration, pH 5.1: 93% removal efficiency, nanofiltration: 97% removal efficiency, reverse osmosis, pH 4-11: 99% removal efficiency) Electrolysis: for low metal concentration (e.g. electrodialysis: 13% removal
	 efficiency within 2 hours at 2g/L, membrane electrolysis, electrochemical precipitation, pH 4-10, >99% removal efficiency) Reverse osmosis: extensively used for the removal of dissolved metals Ion exchange: final cleaning step in the removal of heavy metal from process wastewater (e.g. 90% removal efficiency for clinoptinolite and 100% removal efficiency for synthetic zeolite) One or more of these RMMs were reported to be present in >50% of the sites
	for production. The 50 ^{er} percentile of reported site-specific removal efficiency for 40 sites is 99% (range between 90% and 99.98%). More information can be found in EC (2001), Integrated Pollution Prevention and Control (IPCC): reference document on Best Available Techniques in the Non Ferrous Metals Industries.
	Waste Releases to the floor, water and soil are to be prevented. If the metal content of the waste is elevated enough, internal or external recovery/recycling might be considered.
Substance use rate	Assessment defaults as set by ERC 1. It is recommended to use a realistic substance use rate.

Days emitting	Default number of emission days are derived from a multi-metal background database of measured site-specific release factors collected under the former Directive of New and Existing Substances and REACH 2010 registration dossiers.					
	182 days/year	This is the 10 th perce emission days for 168 compounds.	ntile of repor 8 sites from p	ted site-specific number of production of metal		
Integrated release factors (air, water, soil)	Default release measured site Assessment R Substances ar Air	e factors are derived fro -specific release factors Reports under the forme nd REACH 2010 registra	om a multi-me s collected fro r Directive of ation dossier	etal background database of om peer-reviewed EU Risk New and Existing s.		
	0.03% (release after RMM)	The 90 th percentile of reported site-specific release factors to air for 145 sites from the production of massive metal and metal powder				
	Water					
	Kd* (L/kg)	Release factor		Justification		
	< 1,000	6% (before on-site STP) 0.2% (after on-site STP)		Assessment default as set by ERC 1		
	1,000 — 10,000			Reasonable worst-case (90 th percentile) (available data too limited to develop robust regression)		
		Kd	Pelease	Realistic worst-case		
			factor**	10^(1.59 – 1.14 x log(Kd))		
		10,000 - 25,000	0.2%	of the metal-specific 90 th		
	10,000 -	25,000 - 60,000	0.04%	percentile reported site-		
	400,000	60,000 - 100,000	0.01%	wastewater for 201 sites		
		190,000 - 190,000	0.005%	from the production of		
		250,000 - 400,000	0.001%	massive metal and metal		
		** after on-site STP		powder		
	> 400,000	6% (before on-sit	e STP)	Assessment default as set by ERC 1		
	* Kd = Solid w	ater partition coefficient	for suspend	ed matter		

Determinant Label ¹	Quali-/ Quanti- tative ²	Value ³	Description of Value ⁴
On site treatment of wastewater	Qual	Chemical precipitation or sedimentation or filtration or electrolysis or reverse osmosis or ion exchange	Following IPPC-BREF note document, the treatment methods are very much dependent on the specific processes and the metals involved. Direct water emissions should be reduced by implementing one or more of the following RMMs: • Chemical precipitation: used primarily to remove the metal ions (e.g. Ca(OH)2, pH 11 precipitation: >99% removal efficiency; Fe(OH)3, pH 11: 96% removal efficiency) • Sedimentation (e.g. Na2S, pH 11, >99% removal efficiency) • Filtration: used as final clarification step (e.g. ultrafiltration, pH 5.1: 93% removal efficiency, nanofiltration: 97% removal efficiency, reverse osmosis, pH 4-11: 99% removal efficiency) "• Electrolysis: for low metal concentration (e.g. electrodialysis: 13% removal efficiency within 2 hours at 2g/L, membrane electrolysis, electrochemical precipitation, pH 4-10, >99% removal efficiency) • Reverse osmosis: extensively used for the removal of dissolved metals lon exchange: final cleaning step in the removal of heavy metal from process wastewater (e.g. 90% removal efficiency for clinoptinolite and 100% removal efficiency for synthetic zeolite) More information can be found in EC (2001), Integrated Pollution Prevention and Control (IPCC): reference document on Best Available Techniques in the Non Ferrous Metals Industries.
On site treatment of off-air	Qual	Electrostatic precipitator or wet electrostatic precipitator or cyclones or fabric/bag filter or ceramic/metal mesh filter or wet scrubber	Direct air emissions should be reduced by implementing one or more of the following RMMs: · Electrostatic precipitators using wide electrode spacing: 5 – 15 mg/Nm ³ · Wet electrostatic precipitators: < 5 mg/Nm ³ · Cyclones, but as primary collector: < 50 mg/Nm ³ · Fabric or bag filters: high efficiency in controlling fine particulate (melting): achieve emission values < 5mg/Nm ³ . Membrane filtration techniques can achieve < 1 mg/Nm ³ · Ceramic and metal mesh filters. PM10 particles are removed: 0.1 mg/Nm ³ Wet scrubbers: < 4 mg/Nm Fugitive emissions should be reduced from material storage and handling, reactors or furnaces and from material transfer points by following hierarchical measures: process optimization and minimization of emissions, sealed reactors and furnaces, targeted fume collection.